

TenCoat[™] 5000 Internal Pipe Coating

TenCoat[™] 5000 internal pipe coating is a thermosetting epoxy powder coating to be used inside steel pipes. It is typically applied over a phenolic primer, due to its superior adhesion as this improves the performance of the coating system.

TenCoatTM 5000 presents excellent performance for sweet oil and gas production, hydrocarbons and liquid solutions, maintaining its flexibility and corrosion protection properties.

GENERAL CHARACTERISTICS				
COLOR	Tan			
APPLIED THICKNESS	300–500 μm			
PRIMER	Phenolic primer, Thickness: 12.5–40 µm			
USE TEMPERATURE	Up to 120°C			
PRIMARY APPLICATIONS	Production tubing, injection tubing, flowlines, pipelines			
PRIMARY SERVICES	Oil, natural gas, fresh water, salt water, injection/disposal water, CO ₂ Injection, WAG			
BENEFITS	Excellent adhesion, flexibility, hydraulic efficiency			

AUTOCLAVE PERFORMED TEST * TEMPERATURE PRESSURE (PSI) TEST CONDITIONS

TEMPERATURE	PRESSURE (PSI)	TEST CONDITIONS	DURATION	RESULTS
149°C (300°F)	5,000	10%CO₂, 90% CH₄, Hydrocarbons, Tap water	16 hours	Pass
149°C (300°F)	6,500	27%CO ₂ , 73% CH ₄ , Hydrocarbons, 5% Brine	16 hours	Pass
107°C (225°F)	4,000	Alternating 3X (WAG), 5% brine (H_2 S-saturated), 100% CO_2	6 hours	Pass
66°C (150°F)	2,000	3% CO ₂ , 97% CH ₄ , 5% brine (H ₂ S-saturated), Rocker arm test	28 days	Pass
95°C (203°F)	3,000	Gas phase: N₂. Liquid phase: Treated sea water	24 hours	Pass
95°C (203°F)	3,000	Gas phase: 3% CO ₂ , 3% H ₂ S, 94% CH ₄ . Liquid phase: Formation water brine	24 hours	Pass
95°C (203°F)	3,000	Gas phase: CO ₂ . Liquid phase: Wasia water	24 hours	Pass
50°C (122°F)	Covered Vented Container	10% Vol. HCl	24 hours	Pass

^{*} These tests results are based on laboratory simulations of field conditions and should serve only as a general guide.

Test results may not accurately predict field performance.

For additional information, please visit www.tenaris.com

Or contact CoatingTechnology@tenaris.com

