

TenCoat[™] 7000 Internal Pipe Coating

TenCoatTM 7000 internal pipe coating is a thermosetting epoxy powder coating to be used inside steel pipes. It is typically applied over a phenolic primer, due to its superior adhesion which improves the performance of the coating system.

TenCoatTM 7000 presents excellent performance under sweet oil and gas production, hydrocarbons and liquid solutions at moderate to high temperatures, maintaining its corrosion protection properties.

GENERAL CHARACTERISTICS				
COLOR	Green			
APPLIED THICKNESS	300–500 μm			
PRIMER	Phenolic primer, Thickness: 12.5–40 μm			
USE TEMPERATURE	Up to 150°C			
PRIMARY APPLICATIONS	Production tubing, injection tubing, flowlines, pipelines, drill pipe			
PRIMARY SERVICES	High temperature, oil, natural gas, fresh water, salt water, injection/disposal water, CO ₂ Injection, WAG, gas lift			
BENEFITS	Excellent adhesion, acid and abrasion resistance			

AUTOCLAVE PERFORMED TEST *

TEMPERATURE	PRESSURE (PSI)	TEST CONDITIONS	DURATION	RESULTS
149°C (300°F)	6,500	3%CO ₂ , 97% CH ₄ , 50% Toluene–50% Kerosene, C brine	16 hours	Pass
135°C (275°F)	5,000	1% H₂S, 20% CO₂, 79% CH₄, 50% Toluene–50% Kerosene, Brine	16 hours	Pass
135°C (275°F)	6,500	3% H ₂ S, 3% CO ₂ , 10% CH ₄ , 74% N ₂ , Lime mud	72 hours	Pass
149°C (300°F)	10,000	$3\%CO_2$, 97% N_2 . Instant decompression	16 hours	Pass
95°C (203°F)	3,000	Gas phase: 100% N_2 . Liquid phase: Treated sea water	24 hours	Pass
95°C (203°F)	3,000	Gas phase: 3% H ₂ S, 3% CO ₂ , 94% CH ₄ . Liquid phase: Formation water brine	24 hours	Pass
95°C (203°F)	3,000	Gas phase: 100% CO ₂ . Liquid phase: Wasia water	24 hours	Pass
50°C (122°F)	Covered Vented Container	10% Vol. HCl	24 hours	Pass

^{*} These tests results are based on laboratory simulations of field conditions and should serve only as a general guide. Test results may not accurately predict field performance.

For additional information, please visit www.tenaris.com

Or contact CoatingTechnology@tenaris.com

